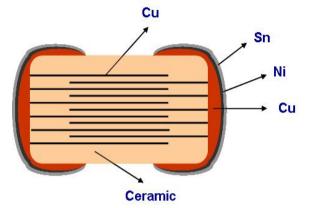

Introduces two new High Q products

GHQ Series = High Q GUQ Series = Ultra High Q

Calchip Electronics, INC. 59 Steamwhistle Drive, Ivyland, PA. 18974

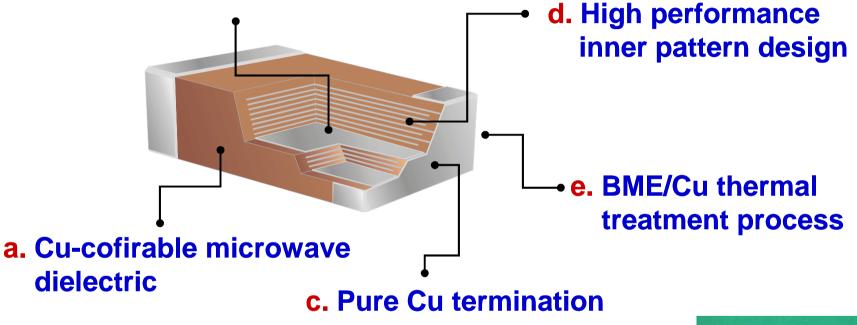
www.calchipelectronics.com Phone: (215) 942-8900 Fax (215) 942-6800


CALCHIP ELECTRONICS, INC.

Calchip Ultra-high Q/Low ESR (GUQ-MLCC)

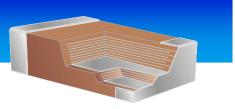
Features:

- Made by BME technology with Cu inner electrodes.
- Excellent Q level at high frequency applications.
- Having high SRF characteristic.
- Offer ultra low capacitance to 0.1pF.
- Offer high precision capacitance tolerance to ±0.05pF



HOW TO ORDER

GUQ	10	CG	101	J	250	Ν	Т
SERIES	SIZE	DIELECTRIC	CAPACITANCE	TOLERANCE	VOLTAGE	TERMINATION	PACKAGING
GUQ=Ultra High Q & Low ESR	02=0201 04=0402 10=0603 21=0805	CG = NP0 (COG)	Two significant digits followed b no. of zeros. An R is in place of decimal point. eg.: 0R5=0.5pF 1R0=1.0pF 100=10pF	$A=\pm 0.05 pF \\ B=\pm 0.1 pF \\ C=\pm 0.25 pF \\ D=\pm 0.5 pF \\ F=\pm 1\% \\ G=\pm 2\% \\ J=\pm 5\%$	Two significant digits followed by no. of zeros. And R is in place of decimal point. 25=25 VDC 50=50 VDC 100=100 VDC 250=250 VDC	N=Cu/Ni/Sn	T = 7" reel TD = 13 reel


Core-technology of GUQ-MLCC

b. Pure Cu inner-electrode

Creativeness of CCE GUQ-MLCC

Copper co-firable dielectric recipe:

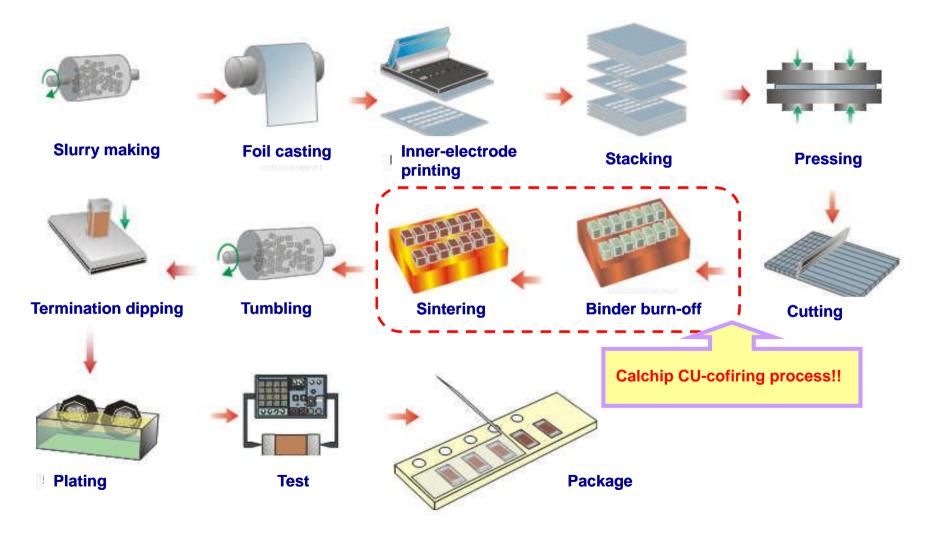
Copper electrode co-firable Ba-Ti-O microwave material & its additives recipe

□ Advanced Inner-electrode pattern design:

Floating inner-electrode placement of MLCC Modified T-type inner-electrode placement of MLCC Precise capacitance control by electrode design of MLCC Advanced Floating inner-electrode placement of MLCC

□ Novel BME-Cu process

Novel BME process of MLCC Manufacture with copper electrode

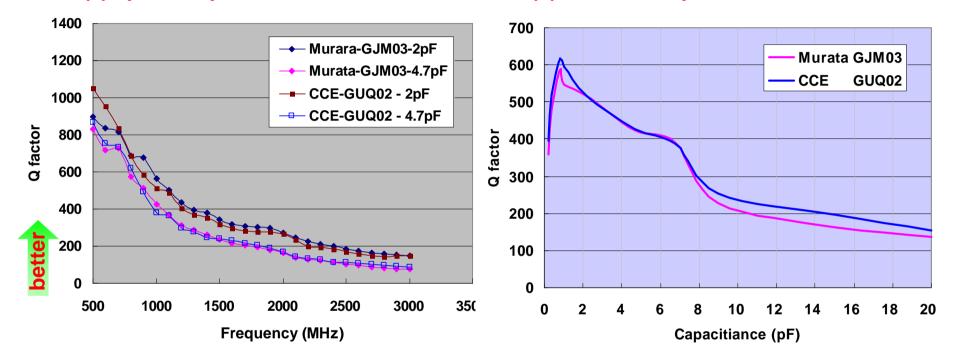

Creativeness of GUQ (Design & Material)

Product comparison (Calchip GUQ-type vs. Murata GJM-type)

Product	Inner-electrode Design	Ceramic composition	Inner-electrode composition	
CCE-GUQ	 L-shape electrode Stress balance design Low-ESR design (for low cap) 	<u>Ba-Ti-O</u> system with sintering aids* (H ² -free protection sintering)	Copper metal	
Murata-GJM	1. Cap-modified variable design	<u>Ca-Zr-O</u> system with Mn doped (H ² reduction sintering)	Copper metal	

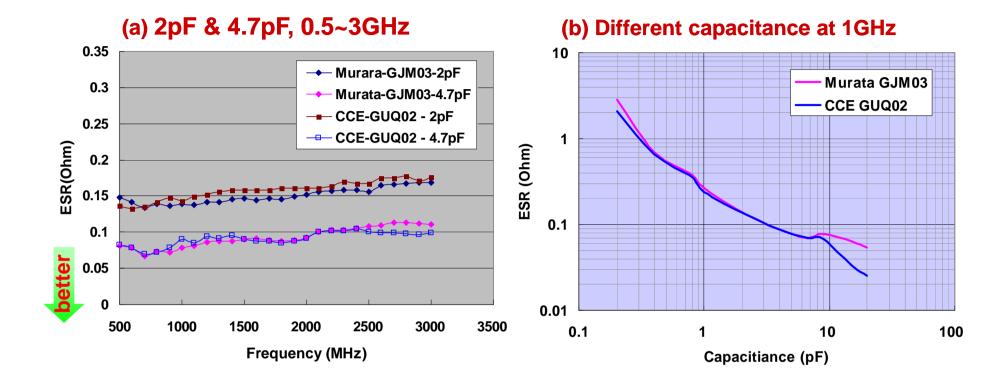
Creativeness of GUQ (Process)

□ Process flow of Calchip GUQ-MLCC

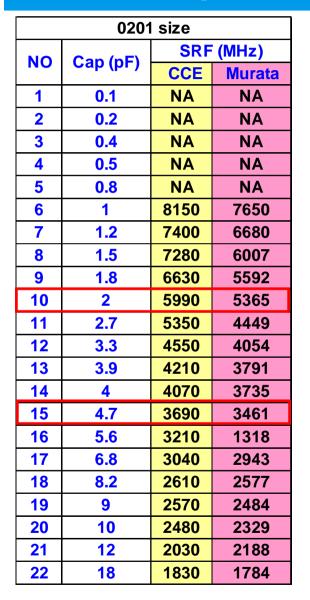

Product Range of GUQ-MLCC

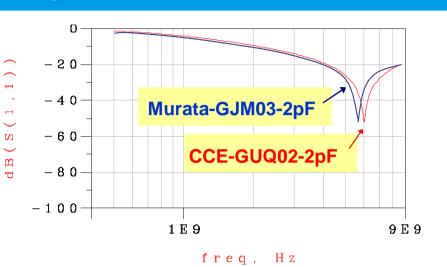
EIA size						402	0603					0805							
Product	GJI	//03	GU	202	GJM15	GU	Q04		GQM1	8	(GUQ1)		GQM	21		GUQ2	1
TC	COG	/СОН	COG	/COH	COG	C	OG		COG			COG			COG			COG	
VOIT.	6.3V	25V	10V	25V	50V	50V	100V	50V	100V	250V	50V	100V	250V	50V	100V	250V	50V	100V	250V
Cap (pF)																			
0R1																			
1R0																			
10																			
20																			
40																			
100																			
Remark	22~ 33 pF	0R1~ 20 pF	22~ 33 pF	0R1~ 20 pF	0R1~ 20 pF	0R1~ 20 pF	0R1~ 10 pF	7R0~ 100 pF	0R2~ 6R8 pF	0R2~ 47 pF	0R2~ 100 pF	0R2~	47 pF	20~ 100 pF	0R2~ 18 pF	0R2~ 100 pF	01	R2~100	pF

Q comparison (GUQ02 vs. GJM03,≤3GHz)


(a) 2pF & 4.7pF, 0.5~3GHz

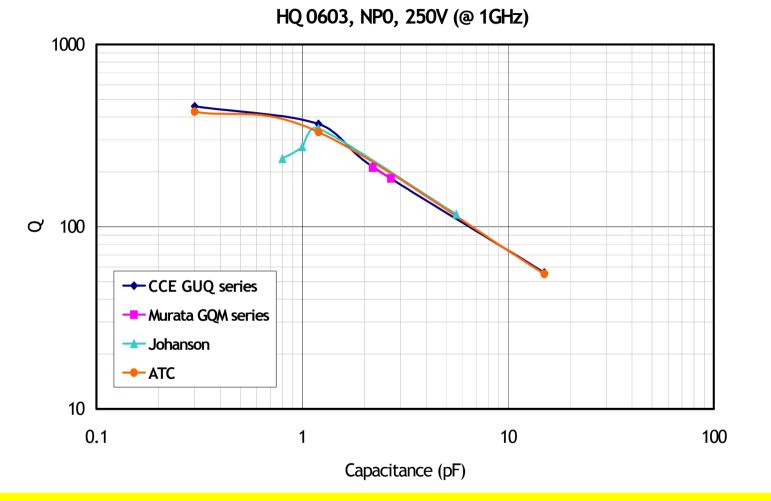
(b) Different capacitance at 1GHz


• Q factor of CCE-GUQ02's are similar or better levels than Murata-GJM03 products measured by LCR meter.

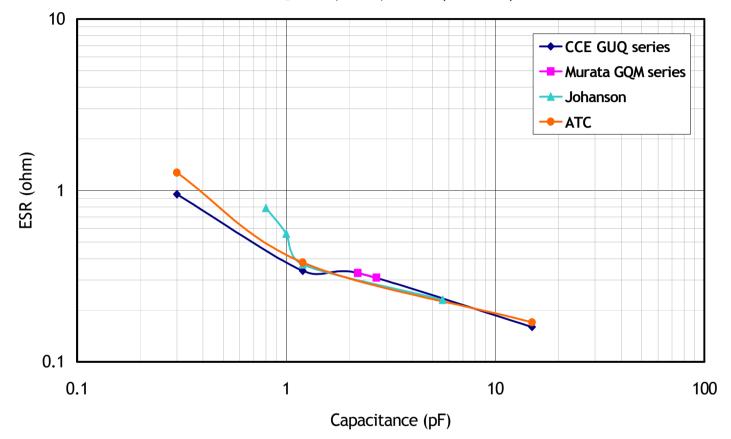

ESR comparison (GUQ02 vs. GJM03,≤3GHz)

• ESR of CCE-GUQ02's are similar or better levels than Murata-GJM03 products measured by LCR meter.

SRF comparison (GUQ02 vs. GJM03, ≤8.5GHz)



• The SRF level of CCE-GUQ02 & Murata-GJM03 are also close, but GUQ02 still slightly high.


Comparison of GUQ10/250V with competitors

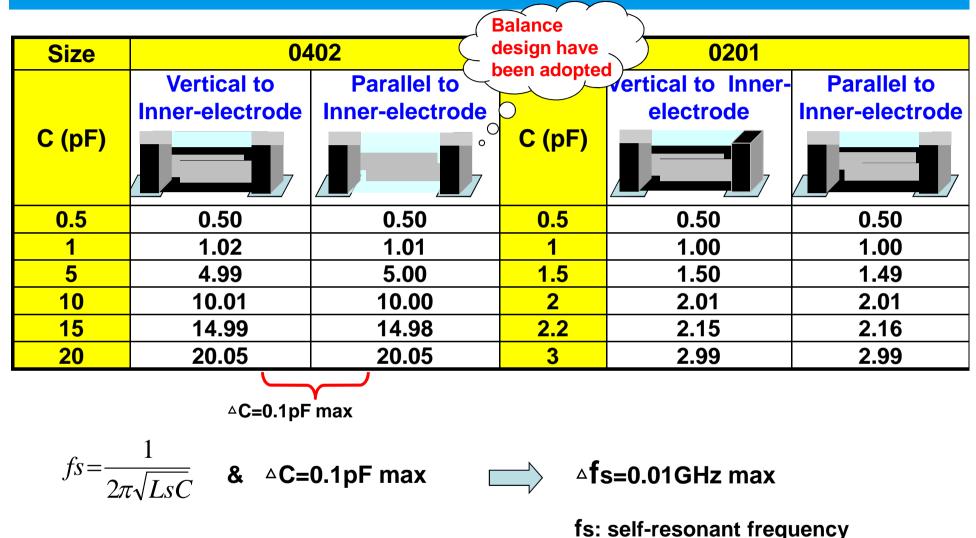
 CCE's high voltage "GUQ" series MLCC has similar Q performances to competitive products in high frequency performance.

Comparison of GUQ10/250V with competitors

HQ 0603, NP0, 250V (@ 1GHz)

 CCE's high voltage "GUQ" series MLCC has similar ESR performances to competitive products in high frequency performance.

Summary


Product range & performance:

- CCE can provide same product range to replace muRata GJM/GQM series.
- CCE GUQ series perform similar HF property with muRata GJM series.

Key technology:

- COG dielectric ceramic (cofirable with Cu)
- Pure Cu Termination & Innerelectrode
- N² protection binder burn-out & sintering Cu cofiring process

Capacitance Measurement with Different Directions

• Conclusion : No significant capacitance discrepancies between different measuring directions of GUQ-MLCC.

CCE NPO-MLCC specifications in mid-high frequency

Product	GUQ series	GHQ series	General purpose		
Dimension	0201~ 0805	0201~ 0805	0201~1812		
Rated voltage	25~250V	25~100V	25~630V		
Dielectric BaTiO compound		BaTiO compound / BaNdTiO compound/ SrCaZrTiO compound	BaTiO compound / SrCaZrTiO compound		
Inner electrode	Cu	Pd-Ag / Ni	Ni / Pd-Ag		
Termination	Cu-Ni-Sn	Ag-Ni-Sn / Cu-Ni-Sn	Cu-Ni-Sn / Ag-Ni-Sn		
Application frequency	500MHz~10GHz	100MHz~1GHz	1MHz~100MHz		
Capacitance range	0.1~100pF	0.1~1000pF	0.1~10000pF		